
Joint Effort: A Strategy for Human Computation

Thomas B. Jonesa, Chayan Chakrabartib,∗, George F. Lugera, Matthew D.
Turnerc, Jessica A. Turnerc

aDepartment of Computer Science, University of New Mexico, Albuquerque, NM
bGeneral Electric Company, San Ramon, CA

cDepartment of Psychology, Georgia State University, Atlanta, GA

Abstract

As machine learning processes have a greater impact on our lives, humans and

machines must often work together on data classification tasks. A human-

machine interaction system that is able to determine which items are most

difficult to automatically annotate can then pass those items off to a human

user. These joint effort strategies can increase performance while decreasing

labor costs. In this paper, we first present a meta-learning strategy for joint

effort. Next, we explore how a new measure derived from the F -score relates

to annotation costs and benefits when humans are used to perform part of an

annotation task. We then simulate the behavior of this score when used to

measure joint effort system performance with differing competencies at both

the base learner and meta-learner levels. Finally, we apply the strategy to a use

case — annotating neuroimaging research literature — and explore its lessons

for human-machine interaction systems. Our work shows that the strategy

employed by the meta-learner that maximizes total profits is dependent on the

cost geometry of the task — the costs and values of correct and incorrect label

results — as well as the accuracy of the meta-learner in choosing between easy

and hard generalization tasks.

Keywords: multi-label classification, meta-learning, cost geometry, joint effort

∗Corresponding Author
Email addresses: ThomasBJones2@gmail.com (Thomas B. Jones), cchakrab@gmail.com

(Chayan Chakrabarti), luger@cs.unm.edu (George F. Luger), mturner46@gsu.edu (Matthew
D. Turner), jturner63@gsu.edu (Jessica A. Turner)

Preprint submitted to Expert Systems With Applications December 22, 2017



1. Introduction

Meta learning — learning about learning — has been an established field of

inquiry in machine learning for more than two decades. Much of this work has

focused on building meta-knowledge about a set of automatic machine learn-

ing algorithms and training data sets so as to choose the best available or con-5

structable learning algorithm for the generalization set (Vilalta and Drissi, 2002;

Smith-Miles, 2008; Stolfo et al., 1997; Michie et al., 1994).

This work presumes that every item in a generalization set — the set of items

that the learner must label, classify, identify, hypothesize about, etc. — must

be generalized by a set of automatically generated machine learners. This fully10

automated machine learning is a lofty goal, but it leaves us open to a lack of

understanding about possible trade offs between human and machine learners.

Additionally, a large amount of work dealing with learning systems and cost

focuses on the single-label case where a classifier is trying to choose one label

among many for each item in the generalization set (Lomax and Vadera, 2013).15

Here we examine how the properties of the multi-label case can modify how

costs are accounted for compared to the single-label case. Specifically, we note

that there is an asymmetry between false positives and false negatives when

considering many multi-label classification problems. Metrics derived from the

F score can be used to balance tasks between human laborers and machines20

when positive label results are more important than negative label results.

We present a strategy for dividing tasks between human and machine learn-

ers. This strategy takes into account (1) the benefits accrued when tasks are

successfully or unsuccessfully completed (2) the costs of completing the tasks

using humans and (3) the ability of a machine to pass some tasks off to a human.25

Our method is one of many possible joint effort strategies — learning strate-

gies that automatically balance generalization tasks between human laborers

and a machine learner so that both perform some significant and appropriate

proportion of the work.
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The normative goal of many meta-learning systems lies in finding the best30

learning algorithm(s) for a particular learning task. This is achieved by meta-

learning the performance of a set of base machine learning algorithms and then

combining the outputs of those algorithms according a model produced by the

meta-learner. Overviews of this approach to meta-learning are provided by

Vilalta and Drissi (2002), Ruta and Gabrys (2000), and Kittler et al. (1998).35

A great deal of research has gone into building automated meta-learning

systems. For example, Kadlec and Gabrys (2008) present a gated neural network

based meta-learner that weights local expert machine learners based on their

performance. They show that the resulting combination learner outperforms

a different learning algorithm combination technique on mean squared error.40

More recently, Hmida and Slimani (2010) present a distributed system for meta-

learning built on the WEKA machine learning system (Witten and Frank, 2005).

In their system a fully automated set of learning nodes attempt to learn models

of a data set locally and then the best learners are learned by a set of meta-

learning nodes.45

Finally, turning to a meta-learning system for the multi-label case, Chekina

et al. (2011) use data set meta-features — features such as data set length,

mean, standard deviation, number of attributes, etc. — to aid the meta-learner

in determining which underlying machine learner would be best on a number

of multi-label classification tasks. They discovered that their meta-learning50

algorithm could predict the best performing algorithm two-thirds of the time.

In contrast, our work focuses on splitting a multi-label data set based on

the difficulty of labeling items in that data set. We measure different ways of

splitting such a set with a joint effort classifier — a meta-learner set up to split

a generalization set into easy and hard categories for consumption by human55

and machine learners. Then we examine how our joint effort learner affects the

costs of employing human labor to complete learning tasks.

In this paper we outline a strategy for joint effort. This strategy splits a

generalization task into two groups — items that are easy to annotate and

those that are hard to annotate, using a joint effort classifier.60
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We then present a method for determining when joint effort may be worth

the effort using a metric derived from a common measure for machine learning

performance, namely the Fβ-score.

Next, we use a simulated joint effort classifier, a simulated machine learner,

and simulated data to characterize the behavior of R on both the easy and hard65

items given differing learner and joint effort classifier competencies. Finally, we

present the results of our cost-gap measurement on a gold standard data set

built using CogPO (Turner and Laird, 2012).

Section 2 presents the joint effort strategy. Next, Section 3 describes the

value cost ratio and provides its motivation, and Section 4 presents simulated70

data used to show how the metric varies with different learner and joint effort

classifier accuracies. Section 5 shows the results of applying this metric to the

BrainMap corpus using a multi-label naive Bayes learning algorithm and a naive

Bayes joint effort classifier. Finally, Section 6 offers conclusions and discusses

future work.75

2. Joint Effort

Some foreseeable joint effort strategies include completing part of a general-

ization task with a machine and part of the same task with a human, using a

machine learner to advise a human learner who makes a final call, or splitting

tasks so that some tasks go to humans and some to machines. These strategies80

are driven by the idea that humans can interact with machine learning systems

to reduce human labor and produce better results than might be produced by

either the humans or the machine alone.

We are interested in joint effort since this strategy is generalizable to many

domains. Consider a chatter-bot that accepts questions from a human user,85

classifies the questions using some machine learning algorithm, and then uses the

classification to select from a number of pre-programmed responses (Chakrabarti,

2014). When the chatter-bot successfully identifies a human user’s query, there

is some value produced. Alternatively, when it is unsuccessful, a lesser value is
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achieved. In either case, the chatterbot alone has some performance on the task90

of classifying the needs of its human user.

When the chatter-bot is performing a task such as interfacing with an e-

commerce site, the difference in value between a correct identification and an

incorrect one can be large. A customer may choose a competitor’s site or prod-

uct if sufficiently frustrated by a bad chatter-bot experience. One alternative is95

providing humans instead of chatter-bots to aid human users. However, provid-

ing a human in every interaction is difficult to justify if a chatter-bot is cheaper

than human labor and mostly good-enough — helping most users get close to

achieving their goals. Using joint effort to seamlessly pull human experts into

the loop when users become frustrated provides a higher total performance than100

a machine alone and lower costs than humans alone.

2.1. Human Computation

Traditionally, interaction between humans and machine learners has been

limited to humans providing data to constrain a machine learning system and

then stepping back while the machine learner does the rest of the work (Settles,105

2010; Snow et al., 2008; Laws et al., 2011; Rashtchian et al., 2010). This human-

as-machine-teacher model — where the human acts as an oracle to the machine

— has been very useful, but it doesn’t cover all the possible ways that machines

might work with humans.

Human computation, on the other hand, uses humans to perform tasks that110

computers are incapable of performing (Von Ahn, 2009). In its original formula-

tion, human computation involves a process of gamification, where humans are

automatically presented with generalization tasks as a game. However, many of

the strategies employed for joint effort involve placing the emphasis on allowing

the humans to perform all of a generalization task. This is true even though the115

process of presenting those tasks to a human user may be highly automated.

Another strategy for human computation involves machines automatically

delegating tasks between human learners. This gets much closer to a true joint

effort task. For example, Nushi et al. (2014) build a system for automatically
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directing Q&A queries to those humans most likely to have the necessary exper-120

tise. Parameswaran et al. (2014) use machines to balance filtering loads between

human laborers. They do not note it in their paper, but there are strong par-

allels between what they do, balancing filtering tasks between human laborers,

and what a joint effort classifier does in balancing generalization tasks between

machine learners.125

2.2. A Strategy for Joint Effort Learning

An outline of our strategy for directing generalization tasks to machines

or humans can be seen in Figure 1. In this figure we show how tasks can be

balanced between humans and machine learners. To kick start the process, we

assume that the human annotators will provide a gold standard data set for130

supervised learning. This data set will be used to both provide the underlying

machine learner with bindings between feature evidence and output labels, as

well as a method for scoring the learner’s ability after learning. This strategy

assumes that the data sets for learning and generalization are stationary — that

future data will be drawn from a data set that is statistically similar to the gold135

standard data set.

3. Value-Cost Analysis

The cost of human labor is often very large while the costs of machine labor

are often quite low. Properly balancing a joint effort task between human and

machine learners, therefore, means having an appreciation for the costs incurred140

in the use of human labor. Additionally, an appreciation for the value produced

by a particular task is also required. In previous work, these two different

concepts - the cost of labeling an item and the value produced by the label,

have often been considered jointly (Elkan, 2001). We separate them in an effort

to show how common performance measures relate to labeling costs and values.145
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Meta-Learning Generalization Difficulty:
A Strategy for Human-Machine Joint Effort

Input

Labeled Data

Expected
Constant of
Proportionality

Hard: 2.1
Easy: 5.8

Outputs
Joint Effort 
Classifier
Naive Bayes
C4.5
SVM
...

Learn 
Labels

Generalize

(*) Spliting the data and 
comparing the labels requires
knowledge of the folds in the labeled and
unlabeled data along with the base learners from 
(1). Thus(A), (B) and (C) are inputs to (4).   

Produce Meta-Labels

Fold Data

Meta-Labeled
Data

Remove
 Labels

Learner
Naive Bayes
C4.5
SVM
...

Learn 
Labels

Generalize

Item 11:
   Test1: 5.4, Test2

Item 11:
   Test1: 5.4, Test2

Fold Unlabeld
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Item 11:
   Test1: 5.4, Test2

Compare
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1

2

Score Joint Effort Classifier 
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Naive Bayes
C4.5
SVM
...

Learn 
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Joint Effort 
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Item 11:
   Test1: 5.4, Test2
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   Test1: 5.4, Test2

3
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Labels*
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Data and
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C

A

B

B

C

Figure 1: In this figure we present our strategy for human-machine joint effort. The

strategy relies on (1) folding the labeled learning data to assign either an easy or a

hard label to each item in the generalization task. (2) Each item’s label is determined

by the performance of the learner on that specific item with items that have mostly

correct labels sent to the easy category, and those with mostly incorrect labels sent

to the hard category. Then (3) the labeled data is also folded and (4) the constant

of proportionality R for each fold is calculated and averaged. Finally a joint effort

classifier produced with all of the meta-labeled data from (1) is returned along with

the scores from (3). This strategy assumes that future data will be drawn from a data

set that is statistically similar to the labeled data set.
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3.1. Cost Dependent Learning Algorithms

Human-machine interaction systems often take the cost of obtaining infor-

mation into account. This is especially true of decision tree algorithms that are

able to ignore many available features on any given run. (Davis et al., 2006)

design an implementation of the ID3 algorithm that places the most expensive150

features higher in the tree, while placing less expensive tests lower in the tree. A

compelling argument for this paradigm of placing the most expensive tests first

is the existence of problem sets, like forensics, where obtaining certain expensive

features for every item earlier in the testing process is actually less expensive

than obtaining these features for only a few items later on in the process.155

While feature selection is an important part of determining classification

costs, many authors also focus on misclassification costs — the cost of obtaining

an erroneous output. Both Ling et al. (2006a) and Domingos (1999) focus on

the cost of misclassification in decision trees, though the method presented by

Domingos (1999) can be applied to many different learning algorithms.160

A number of authors capture both misclassification and feature costs in

a single algorithm (Núñez, 1991; Tan, 1993; Turney, 1995; Ling et al., 2006b).

This matching of feature costs and misclassification costs can occur in a number

of ways. Zhang (2010) presents a decision tree algorithm, cost-time sensitive

classification, that uses different units for feature costs and misclassification165

costs. Sheng and Ling (2006) and Greiner et al. (2002) also use both feature

and misclassification costs but with a focus on active learning — determining

when to obtain missing feature values.

A recent survey of cost sensitive decision tree algorithms shows many decision

tree algorithms that take costs into account (Lomax and Vadera, 2013). Similar170

to the previously cited papers (Núñez, 1991; Tan, 1993; Turney, 1995; Ling

et al., 2006b), these algorithms redirect searchers so as to avoid the collection

of high cost features and choose the least risky labels when the data can not

overwhelmingly support more risky choices.

We focus partially on the costs of misclassification when using a Bayesian175

classifier. Elkan (2001) provides a theorem that re-weights data in the training
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set of a single learning algorithm to take costs into account. This procedure is

applied to both decision trees and Bayesian classifiers.

Ibánez et al. (2011) use a cost sensitive naive Bayes classifier to predict h-

index scores using a variety of features for different authors. Cost re-weighting180

is obtained by multiplying each label’s output probability by its cost in a cost

matrix.

Finally, Chai et al. (2004) present a method for evaluating feature costs

in a Bayesian classifier. This work is unique in that it allows for batch feature

collection — the collection of many features all at once. Decision tree algorithms185

often focus on sequential feature collection — the collection of a feature at the

moment it is needed.

3.2. The Value-Cost Ratio

Previous work has looked at minimizing the cost of misclassification and data

collection. This work is aimed at a slightly different problem. We will instead190

be examining the ratio between the average value of a label — the amount of

resources that can be obtained after a specific label has been found — and the

average cost of labels — the amount of resources that must be spent on human

labor to obtain labels. Assuming that both costs and values are stated in the

same units, when this ratio is below one then it is better to use an automated195

classifier. Otherwise, when this ratio is above one, human labor is justified.

There are many potential data structures available to represent the cost and

value contexts of any given machine learning task. The simplest, and most

complete, data structure for this task is the matrix. As pointed out by Elkan

(2001), it is best to use a value or benefit matrix, instead of a cost matrix,200

when considering the values or costs of labels. Here, we instead reserve the cost

matrix for the cost of using humans to perform classification tasks.

When the generalization task is a single-label task, the formulation of both

cost and value matrices is straightforward. An expected value — in terms of dol-

lars, time, resources saved, etc. — is assigned to each of the categories true pos-205

itive, false positive, true negative and false negative. This gives a 2-by-2 matrix
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where the rows represent the ‘truth’ of a prediction while the columns represent

the actual value of the prediction — either positive when the machine learner

predicts a label should apply or negative when the machine learner predicts that

it shouldn’t apply. When dealing with multi-class or multi-label classification210

tasks, however, there are many possible non-equivalent cost matrices.

3.3. Value and Cost Matrices

Among the labeling tasks, there is a hierarchy constructed of single-label

classification tasks, single-label/multi-class classification tasks, and multi-label

classification tasks (Turner et al., 2013). The set of possible, meaningfully dif-215

ferent single-label classification cost and value matrices is limited to 2-by-2 ma-

trices as discussed in the previous section. On the other hand, more complicated

classification tasks can have a larger set of potential meaningfully different cost

matrices.

For example a single-label/multi-class value matrix with N labels must have220

up to N2 cells, one for each combination of actual label and predicted label,

to capture information about every combination of actual and predicted labels.

An example value matrix for such a classification task to determine the proper

diagnosis for a patient is given in table 1.

In this matrix, the available classes are flu, cancer, gallstone, or hepatitis.225

Now, in a single-label/multi-class classification task, the learner must return

only a single classification. This means that a full description of the task will

describe the value dependent on the predicted label and the actual label. The

matrix in table 1 has 4 rows and 4 columns, one for each of the actual label-

predicted label pairs. The actual values are recorded in the matrix element Vp,a230

where p is the predicted label and a is the actual label.

When accounting for a multi-label classification task, however, there are

many more degrees of freedom than in the single-label/multi-class classification

task. Since more than one label may apply to a given generalization task, a cost

matrix like table 1 is not sufficient to capture all the information available for235

label costs and values.
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Actual Label

Flu Cancer Gallstone Hepatitis

P
re

d
ic

te
d

L
a
b

el

Flu Vf,f Vf,c Vf,g Vf,h

Cancer Vc,f Vc,c Vc,g Vc,h

Gallstone Vg,f Vg,c Vg,g Vg,h

Hepatitis Vh,f Vh,c Vh,g Vh,h

Table 1: Single-Label/Multi-Class Value Matrix — In this value matrix we have

four labels/diagnoses available: Flu, Cancer, Gallstones, and Hepatitis. Each of the

cells contains the value of the predicted label given the actual label — so Vf,h can be

read the ‘the value of a flu diagnosis given that a patient actually has hepatitis.’

One path forward is to build a matrix that contains a row for every combi-

nation of predicted labels and a column for every combination of actual labels.

A matrix like this, for the same learning task as in table 1 is found in table 2.

Since this matrix must account for every pair of combinations of predicted and240

actual labels it contains (24)2 cells. Any such matrix for a learning task of N

labels will contain min((2N )2, |d|) cells.

This method is similar to the label powerset strategy for transforming multi-

label classification problems into single-label classification problems (Tsoumakas

and Vlahavas, 2007; Read et al., 2011). While this growth rate may be avoided245

by more closely examining the domain of the generalization task, limiting the

output of the learner to only ‘sane’ label combinations, this may not always

possible. As a result, we come upon a case where there is a trade-off between

a full description of the cost of the problem and the amount of computational

complexity required to implement that description.250

One alternative to the matrix presented in table 2 follows the binary rele-

vance strategy for transforming multi-label classification problems into single-

label classification problems (Read et al., 2011). This strategy trains N single-

label classifiers for a multi-label task with N labels. Each classifier is blind

to the labels of the other classifiers and only works on determining if an item255

should be labeled with the label it has been assigned. In a similar way, the
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Actual Label

Flu .. Flu, Cancer, Gallstone All Labels
P

re
d

ic
te

d
L

ab
el

Flu Vf,f .. Vf,(f,c,g) Vf,A

.. ..

...
...

...

.. ..

Flu, Cancer, Gallstone V(f,c,g),f .. V(f,c,g),(f,c,g) V(f,c,g),A

All Labels VA,f .. VA,(f,c,g) VA,A

Table 2: Multi-Label/Multi-Class Combination Value Matrix — Here we show part

of a combination value matrix for a multi-label problem with four labels: Flu, Cancer,

Gallstone, and Hepatitis. In this matrix we use a very similar representation for value

as those in table 1. We represent a combination of labels with a tuple and we use

‘A’ to stand in for all labels. In this matrix V(f,g,c),f can be read as the value of

labeling an item with ‘Flu’, ‘Cancer’, and ‘Gallstone’ when the actual label is just

‘Flu’. We present only part of this combination matrix since even a labeling task with

only 4 labels requires 256 cells for a complete description of the values of its possible

combinations.

matrix set in table 3 accounts for label costs separately, combining the 2-by-2

strategy of accounting for costs of the single-label classifier with an admission

that all possible label combinations must be somehow accounted for. Each label

receives its own cost matrix for when the machine learning algorithm produces260

a true positive, false positive true negative and false negative on that label.

The value scheme in table 3 is built for the case where any particular com-

bination of labels may be likely and where the value of a mislabeling on a

particular label is independent or mostly independent from the value of a misla-

beling on a different label. This cost scheme presented in table 3 has the benefit265

of only requiring 4N cells compared to the (2N )2 cells for a matrix based on

label combinations.

Determining the ratio of labor costs to the value of correctly labeling items

also means determining the cost of human labor. Many different decision criteria

can be used to account for the cost of human labor in labeling tasks. These270

include, but are not limited to: looking at the cost per generalization task, the

cost per byte of data examined, and the cost per label. We focus on the cost of
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Flu

Positive Negative

True V fTP V fTN

False V fFP V fFN

Cancer

Positive Negative

True V cTP V cTN

False V cFP V cFN

Gallstone

Positive Negative

True V gTP V gTN

False V gFP V gFN

Hepatitis

Positive Negative

True V hTP V hTN

False V hFP V hFN

Table 3: Multi-Label/Multi-Class Per Label Value Matrix Set — In this value matrix

set we have four labels/diagnoses available: Flu, Cancer, Gallstones, and Hepatitis.

Each of the matrices tracks the predicted and actual labeling values for a single-

label. The cells contain the values for the four categories — true positive (TP ), true

negative (TN), false positive (FP ), and false negative (FN) — on each of the labels

separately. Therefore, V gTP is the value of a true positive on a gallstone. The final

value of a classification task involves summing over the observed cell in each of the

matrices in the matrix set.

correcting faults in a machine learning task on a per label basis. This is useful

since it allows us to build a cost model that accounts for costs when human

laborers are given the outcome from the machine learning process as a starting275

point for their own evaluation. In this model we are focused on the cost, to

human laborers, of ‘correcting’ the machine learner.

Once a decision criteria is chosen to account for human labor costs, we must

also assign values to the different possible outcomes that human laborers will

have to deal with. For the sake of symmetry, we chose to handle human labor280

costs in the same way as values. In this paper, matrices like those in tables 1,

2, and 3 are assumed for both label values and labor costs. So, for example,

if we are talking about the problem in table 3, a parallel set of cost matrices

are assumed where CgTP is assumed to be the cost of ‘correcting’ a true positive

gallstone, g, label.285

We will assume a binary-relevance cost and value matrix set like that found in

table 3. We represent the set of all possible labels with L. Next, we represent:

(1) the set of true positives on any label, ` ∈ L as TP`, (2) the set of false

13



positives on that label as FP`, (3) the set of true negatives on that label as

TN`, and (4) the set of false negatives on that label as FN`. We will say that290

V is the set of matrices containing label values and C is the set of matrices

containing human labor costs. For any given label `, V ` is the value matrix

of that label and C` is the human labor cost matrix of `. Additionally, V `TP ,

V `FP , V `TN and V `FN are the value of a true positive, false positive, true negative,

and false negative on label ` respectively. Finally, we will represent the set of295

matrices for human labor costs with similar notation.

It is important to consider the profit of any generalization task. Given

that a value and cost matrix are already provided, then the total profit of a

generalization task is

G =
∑
`∈L

(V `TP |TP`|+ V `FP |FP`|+ V `TN |TN`|+ V `FN |FN`|)− (1)

∑
`∈L

(C`TP |TP`|+ C`FP |FP`|+ C`TN |TN`|+ C`FN |FN`|)

300

In this equation the generalization task profit, G, is equal to the sum of the

values of the labels minus the costs of obtaining those labels. For any set S, |S|

is the size of that set. Therefore |TP`| is equal to the number of items in the

generalization task that are labeled with ` and that should be labeled with ` —

in other words that have a true positive labeling of `.305

We assume that (1) the labor costs of the automatic learner is 0 and that (2)

the cost of human labor is positive 1. Using these assumptions the total profit

of the labels produced by an automatic machine learning system, A, is

1We chose these assumptions because we believe that the costs of human labor are often

much greater than those of a machine learner. However, if this isn’t the case, the framework

can be extended by treating the costs in equation 3 as a difference of costs and always placing

the method of labeling with lowest costs in the place of the machine learner in the framework.

In this way, the framework becomes a comparison between a relatively inexpensive method of

labeling and some more expensive method.

14



A =
∑
`∈L

(V `TP |TP`|+ V `FP |FP`|+ V `TN |TN`|+ V `FN |FN`|) (2)

Finally, we assume that expert human laborers will always return the correct310

labels. We also assume that we can capture the difference in costs between

machine laborers and human laborers in a cost matrix whose every entry is

positive. Therefore we can determine that the profit of expert human labor, H,

is

H =
∑
`∈L

(V `TP (|TP`|+ |FN`|) + V `TN (|TN`|+ |FP`|))− (3)

∑
`∈L

(C`TP |TP`|+ C`FP |FP`|+ C`TN |TN`|+ C`FN |FN`|)

315

In equation 3, all the false positives and false negatives found by the machine

learner are joined with the true positives and true negatives respectively. This

accounts for our assumption that the humans will produce correct output or

that, at the very least, the output they produce is the best possible output. We

subtract the costs of employing the humans to correct the machine learner in320

the second half of the equation.

Using these values, determining when it is better to use human annotators or

automatic annotators consists simply of determining if A ≤ H. After some al-

gebra on A and H we can see that justifying human labor means that inequality

4 must hold325

1 ≤ ∆Vavg/∆Cavg =

∑
`∈L(V `TP − V `FN )|FN`|+ (V `TN − V `FP )|FP`|∑

`∈L(C`TP |TP`|+ C`FP |FP`|+ C`TN |TN`|+ C`FN |FN`|)
(4)

This ratio, ∆Vavg/∆Cavg is the ratio of the value of the task to the cost of

the human labor necessary to complete the task. To justify scoring by a human

scorer this value must be greater than 1.
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3.4. The Confusion Score330

The previous discussion raises an interesting point: there is an inherent

asymmetry in many multi-label classification tasks. It lies in the fact that for

many of these tasks, the number of negative, non present, labels greatly out-

numbers the number of positive, present, labels. That is, most labels don’t

apply to most items most of the time. This means that the default assumption335

on any label is that it doesn’t apply to any given item in the generalization task.

The number of labels on each item in a generalization task is called the item’s

cardinality. In many, if not most, multi-label tasks the average cardinality of

items slated for generalization is much lower than the number of available labels.

When this is the case, measures like the micro-F-score, which is the harmonic340

mean of precision and recall over all labels and task items, are much better than

accuracy at measuring machine learning performance (Pillai et al., 2014). The

micro F -score often makes use of a tuning value, β that determines the relative

importance of precision and recall in the final F -score. A formula for the micro

Fβ is:345

Fβ =
(1 + β2)TP

(1 + β2)TP + β2FN + FP
(5)

Bringing this back to our discussion of costs, one reason the micro-F-score

is much better than accuracy for multi-label classification problem lies in the

way that it treats true negatives. They are effectively ignored by the F -score.

This correlates well with an understanding of true negatives as being essentially350

valueless and costless due to a true negative being a correct example of the null

hypotheses. Looking again at inequality 4, notice that if we set all VTP −VFP =

R(β2), all VFN = R, all VTN = 0, all CTP = (1+β2), all CFP = β2, all CFN = 1

and all CTN = 0 then we obtain:

∆Vavg/∆Cavg = R(1− Fβ) (6)
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355

This means that under the proper cost constraints, 1−Fβ , the confusion of

the machine learner, is proportional to the ratio ∆Vavg/∆Cavg. In this paper

we define the confusion score such that 1− Fβ = Cβ .

Additionally, we see that there is a constant of proportionality R in equation

6. Given that the confusion score is a property of a machine learner and its data360

set and that ∆Vavg/∆Cavg must be greater than 1 to justify human labor, we

can determine the constant of proportionality that will ensure human labor is

profitable on a given labeling task using just the confusion score:

R ≥ 1

Cβ
(7)

In the rest of this paper, we call Rβ = 1
Cβ

a machine learner’s Rβ-Score365

and we concern ourselves only with the R1-score, a score that equally weights

learner precision and recall.

4. Simulation Results

We simulated the operation of a human-machine joint effort generalization

like that outlined in Figure 1 on 100 generalization tasks, each containing 1000370

items labeled with between one and five labels out of a total of twenty possible

labels.

The simulation used a Monte-Carlo process to simulate both a learner and

a joint effort classifier. The learner assigned between one and five labels to each

item in the generalization task, using the Monte-Carlo probability to determine375

if the labels were correctly predicted or if they were alternatively incorrectly

predicted (either false positive or false negative). We used the same process for

the joint effort classifier, except that the joint effort classifier only needed to

sort items into easy or hard. An item was determined to be correctly labeled

easy if the C1-score on just its labels was less than 0.5 and hard otherwise.380
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After simulating the labeling process and the splitting process, we then mea-

sured the R1-score on the items labeled easy (Figure 4 A), the items labeled

hard (Figure 4 B), and the difference in R1-scores between easy and hard items

(Figure 4 C).
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R1 Score Multi-Label, Difference Between Easy and Hard Items (C)

"out0.dat" using 1:2:(1/$4-1/$3)
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Figure 2: The heatmaps for the R1-score on a set of (A) easy and (B) hard items as

determined by a simulated joint effort classifier in terms of the probability of successful

labeling in both the machine learner and the joint effort classifier. The third graph

(C) displays the difference between the first and second graphs. Since the R1-score

varies greatly at the edges of the graph all values are clipped between −10 (green) and

10 (white), in order to show the behavior of the R1-score over the center of the graph.

Notice that there is a large difference between the R1-score of the (A) hard and (B)

easy data sets when both the joint effort classifier and learner are very accurate. It is

in this operating region that a joint effort strategy is most likely to be viable.

As can be seen in Figure 4 A, the value of R1 of the easy data set increases385

as both the joint effort classifier’s Monte-Carlo success rate increases and as

the machine learner’s Monte-Carlo success rate increases. This occurs because
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the easy data set is benefiting from both the high base rate of correctly labeling

items by the learner, and the high likelihood that all poorly labeled items will be

removed from the easy data set by the joint effort classifier. Thus, a competent390

machine learner and joint effort classifier means that the confusion must be low

and therefore R1 must be high.

Looking at graph B we can see that the value of R1 increases for the hard

items as the joint effort classifier’s success rate decreases while the learner’s

Monte-Carlo labeling probability increases. This is due to the fact that the395

joint-effort classifier must work harder to extract poorly labeled items from

the items in the generalization task as the underlying learning process becomes

more competent, but if the joint effort classifier is sufficiently capable, the hard

data set will often still have a large number of poorly labeled items leading to

a large confusion score. With a large confusion score comes a smaller R1 value400

necessary to justify labor by human experts.

Finally, graph C in Figure 4 shows that there is a large difference between

the R1-scores of the hard and easy sets when both the Monte-Carlo labeling

rate of the meta learner and the learner are high. When this is the case, both

the easy and hard data sets contain a large number of correctly labeled items,405

however the performance of the learner on the easy data set is very close to

perfect, while it is less perfect for the hard data set. Even this small difference

in performance is enough to create a large difference in R1-scores since the

R1-score is the reciprocal of the confusion score.

5. The Confusion Score on the BrainMap Corpus410

We present the results of our experiments using that score on abstracts anno-

tated with labels drawn from the CogPO ontology. The Cognitive Paradigm On-

tology is a framework for the explicit representation of the cognitive paradigm,

that is, the behavioral elements of neuroimaging experiments involving humans

(Turner and Laird, 2012). It provides a controlled vocabulary for the annotation415

of the published neuroimaging literature with labels uniformly identifying as-
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pects of experimental design. For instance, it links named behavioral paradigms

(specific) with their functional descriptions (general).

The five categories we used in this study were: Stimulus Type with 46 labels

and an average cardinality of 1.26, Response Type with 18 labels and an average420

cardinality of 1.56, Stimulus Modality with 6 labels and an average cardinality

of 1.20, Response Modality with 10 labels and an average cardinality of 1.25, and

Instructions with 20 labels and an average cardinality of 1.43. A rough overview

can be seen in Figure 5 and more details are given by Turner and Laird (2012),

Chakrabarti et al. (2014), Chakrabarti et al. (2013), and at www.cogpo.org.425

Figure 3: A rough overview of five categories in CogPO. There is a large diversity in

the number of available labels over each of these categories.

The gold standard data set used here was obtained by expert human anno-

tation of the full-text of the relevant scientific papers, primarily by one of the

authors (ARL). For our analysis, these labels were paired with the text of the

abstracts for the papers. It is worth noting this feature: the machine learning

system was not given the same complete information used by the expert human430

annotators.
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We used a java machine learning package called MALLET McCallum (2002)

that provides the user with many classification objects among which is a single-

label naive Bayes classifier transformed into a multi-label naive Bayes classifier

using binary relevance. This method creates separate naive Bayes classifiers for435

each potential label in our five categories. Thus, the category Stimulus Modality

would have six different binary naive Bayes classifiers for each of its six labels.

We used these classifiers in a two step classification process. In step (1) the

2251 abstracts were split into 100 folds and each abstract was classified using

only abstracts from the other 99 folds with the classification results recorded in440

each category. Next, if the C1-score of the abstract in a particular category was

less than the joint effort classifier discrimination rate then the abstract was

classified as easy and otherwise it was classified as hard. In step (2), a naive

Bayes joint effort classifier was built for each of the 100 folds and each label

category, with each joint effort classifier learning which items should be labeled445

easy or hard. Then, the the R1-scores of the generalization task performed

in this step were recorded separately for both the easy data set and the hard

data set as determined by the joint effort classifier. This follows the joint effort

strategy outlined in Figure 1. Throughout this process, we ensured that the

folding was done properly across both the learner and the joint effort classifier,450

with the joint effort classifier being given access only to the labeling data from

the 99 folds it was attempting to generalize.

This process was performed on all 2251 abstracts using all 100 folds. We

performed this process with joint effort classifier discrimination rates — the

confusion score at which items were moved from the easy category to the hard455

category — that varied from 0 to 1 in increments of 0.1. Finally, for each

discrimination rate, we measured the R1-score for each of the categories for

both hard and easy data sets as well as a baseline rate for both sets together

over all 100 folds. In Figure 5 we present the average R1-score along with its

standard deviation for each of the five categories at various joint effort classifier460

discrimination rates.

In Figure 5 we show that the items identified as hard have an R1 Score that
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Figure 4: We show the R1 rate for items labeled easy and hard by a naive Bayes

joint effort classifier as well as a baseline that shows the confusion for both groups

together on all five categories from CogPO. The independent variable is the joint

effort classifier discrimination rate. As the discrimination rate is turned down, the

constant of proportionality for both the easy and hard categories rise. The Y-axis is

re-scaled for each panel. See text for explanation.

22



sits below the baseline score while those identified as easy have a constant of

proportionality that sits above the baseline score (Remember, a low constant of

proportionality means a high confusion score and vice versa). The naive Bayes465

joint effort classifier is able to discriminate between easy and hard items even

though it relies on the same basic data as the underlying learners and has the

same inductive biases.

There are two hypothesis for why this is the case. First, the joint effort

classifier is discovering ambiguous terms in the BrainMap abstracts that indicate470

that an item may be hard. An example of such a term is “oddball” which can

indicate either a visual or auditory Stimulus Modality. The use of the same

term for items that differ in stimulus modality may make the classification task

harder.

Our second hypothesis relies on the fact that for each category, most items475

have one of a few different labels. In the Stimulus Modality category, for in-

stance, items are labeled “Visual” 73.5% of the time. The joint effort classifier

may be acting as a ‘second vote’ in favor of items in the majority label, cor-

ralling the items that truly have that label into easy set and sending items that

come from the more difficult minority labels to the hard set.480

Additionally, we see a transition point over all five data sets at a discrim-

ination rate of 0.3 where the R1-score falls for both the easy and hard sets.

An explanation for this is straightforward. As the confusion discrimination rate

rises, the joint effort classifier switches its bias from sending all items to the

easy set unless they’re obviously hard, to sending all items to the hard set un-485

less they’re obviously easy. This means that a cohort of items with confusion

scores near the baseline switch from the hard to the easy data set at a confusion

rate of about 0.3. Since this cohort has a confusion that is lower than the hard

data set, but higher than the easy data set, the confusion rate of both data sets

falls, leading to a rise in both data sets R1-score.490

Considering the ∆Vavg/∆Cavg ratio presented in equation 6 for these five

experiments, we might ask how much does the ratio of proportionality, R, vary

and leave us with a useful strategy for joint effort. If Rhβ is the Rβ-score of the
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hard data set and Reβ is the Rβ-score of the easy data set, then notice that each

of the discrimination rates in Figure 5 can vary between Reβ and Rhβ and that495

the joint effort classifier will still be able to usefully differentiate between a set

that should be sent to humans and one that should be learned by machines.

This means that for a single joint effort classifier/base-learner pair on a single

data set and task, R can be anywhere in the interval between (Rhβ , R
e
β) obtained

at each of the discrimination rates measured. Additionally, when all Reβ are less500

than all Rhβ , which is the case for the items in our experiment, R can range

between (Min(Rhβ),Max(Reβ)).

Since each Rh1 for each item is 1 when the discrimination rate is 1 all items

with a confusion score less than 1 are sent to the easy set while items with

confusion scores of exactly 1 are sent to the hard set. This means that in some505

cases the hard data set has either no items, or only a very small number of

items. Therefore, we only allow a confusion score to be in the set of Rh1 if its

size is greater than 50 items.

Next, consider the maximum variance in R. Using the number of hard items

in Figure 5 to decide if a score should be included in the set Rh1 , we see that the510

minimum Rh1 cannot be drawn from a discrimination rate of 1. Taking this into

account, the range of R for the five categories is: Stimulus Modality - (1.85,

8.62) , Stimulus Type - (1.30, 2.66), Response Modality - (2.35 , 5.0), Response

Type - (1.42, 5.31), and Instructions - (1.72 , 3.39).

Finally, we also report the average accuracy (not F -score) of the meta learner515

in Figure 5. We find it interesting that the joint effort classifier accuracy behaved

differently for two of the categories as the discrimination rate was adjusted when

compared to the other three categories. For Stimulus Modality and Response

Modality, the learner’s accuracy went up as fewer items were included in the

hard category. On the other hand, for Stimulus Type, Response Type, and520

Instructions, the opposite was the case. There were differences between these

two categories and every other category, including the fact that they always had

a smaller number of items chosen as hard at every discrimination rate and that

there are fewer labels in both categories compared to their average cardinality.
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Figure 5: The size of the set of predicted hard items and the size of the set of actual hard

items for each of the five categories in the CogPO ontology at diverse discrimination

rates

All of our categories were dominated by items that had only a single correct525

label.

We believe that joint effort classifier accuracy increased for the two modality

categories as the discrimination rate went up because both of these categories

had a large number of easy items, even when the discrimination rate was low.

This, indirectly, was due to the ratio of the number of labels in these two classes530

compared to their average cardinality. At a discrimination rate of about 0.3−0.4

both of these categories went from identifying roughly half the items as easy or

hard to identifying most as easy. Additionally, for the other three categories

the opposite was the case. They went from needing to identify most items as

hard at low discrimination rates, to identifying roughly half the items as hard535

and half as easy at higher discrimination rates. This seems to indicate that the

joint effort classifier works best when there is a large asymmetry between the

number of easy items and the number of hard items.

6. Conclusions and Future Work

We explored a strategy for human-machine joint effort — a generalization540

task where some labels might be labeled by a machine, while others are labeled

by humans. Our strategy involved the use of a joint effort classifier to remove
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items that were hard for an underlying learner to label and sending those items

to human labelers.

We developed a measure called the Rβ-score that can determine when a545

joint effort strategy should be used. This score is the reciprocal of the Cβ-score

which is equal to 1 − Fβ . We demonstrated that the Fβ-score ties into the

value of correct and incorrect labels as well as the costs of correcting labels.

We simulated the behavior of the R1-score on a generalization task where the

learner and joint effort classifier had varying competencies. We found that the550

joint effort strategy was most likely to be viable when both the underlying

learner and joint effort classifier are accurate.

Finally, we applied our strategy to the BrainMap corpus with labels drawn

from the CogPO ontology and found that the easy set determined by the meta

learner had R1-scores that were roughly 2 to 4.5 times higher than the hard555

items in the generalization task. We also posed two hypotheses for why the

joint effort classifier was able to do this even though it had the same inductive

bias as the underlying learner.

An area of further exploration could involve using a joint effort classifier

with different inductive biases than the underlying learner to determine if items560

should be sent to the easy and hard categories. Additionally, our framework

examines the question of balancing items between a costless automatic learner

and expert human annotators and how that question relates to the confusion

score and the constant of proportionality or Rβ-score. Another line of explo-

ration might look at the relationship between a costless automatic learner and565

a ‘mid-skill’ learner. Such a learner may be one like the humans presented by

Snow et al. (2008) who are not able to provide a gold standard data set. Alterna-

tively the learner may also include machine learners that consume a considerable

amount of resources and provide good results without providing perfect results.

Another interesting consideration involves re-training the underlying learner on570

only easy items to see if the confusion score on that learner can be reduced even

further.
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